MIRT Analysis Dashboard

Multidimensional Item Response Theory analysis tools

webR Status

R runtime for mirt analysis (optional - visualizations work without it)

Not Initialized

Note: webR download is ~30MB and may take a moment

Calibration Data

0 total sessions • Using default parameters

Item Parameters (2PL Model)

Itema (Discrimination)b (Difficulty)Max InfoSample SizeSource
Item 10.80-1.500.1600Default
Item 21.20-0.500.3600Default
Item 31.800.000.8100Default
Item 41.500.500.5630Default
Item 52.001.201.0000Default

Item Characteristic Curves (ICC)

Probability of correct response as a function of ability (θ)

-3-2-1012300.250.50.751Ability (θ)P(θ)

Item Information Functions (IIF)

Information provided by each item at different ability levels

-3-2-10123Ability (θ)I(θ)

Items with higher discrimination (a) have taller, narrower information peaks

Test Information Function (TIF)

Total information across all items - determines measurement precision

-3-2-10123Ability (θ)I(θ)

SE(θ) = 1/√I(θ) — Higher information means lower standard error

Understanding ICCs

  • Steepness (a): Higher discrimination = steeper curve = better differentiation
  • Location (b): Where P(θ)=0.5, the item's difficulty level
  • Dots: Mark each item's difficulty parameter on the 0.5 line

CAT Item Selection

  • Maximum Information: Select item with highest I(θ) at current estimate
  • Adaptive: As θ updates, different items become optimal
  • Efficiency: Fewer items needed for precise measurement

Advanced psychometric testing platform with IRT/MIRT analysis